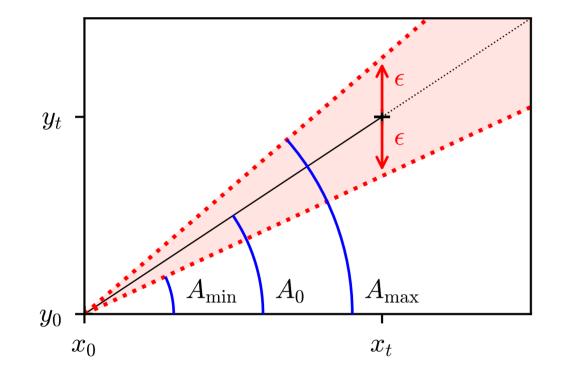


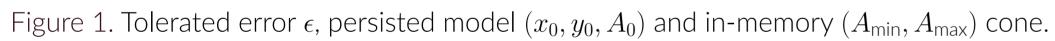
## Introduction

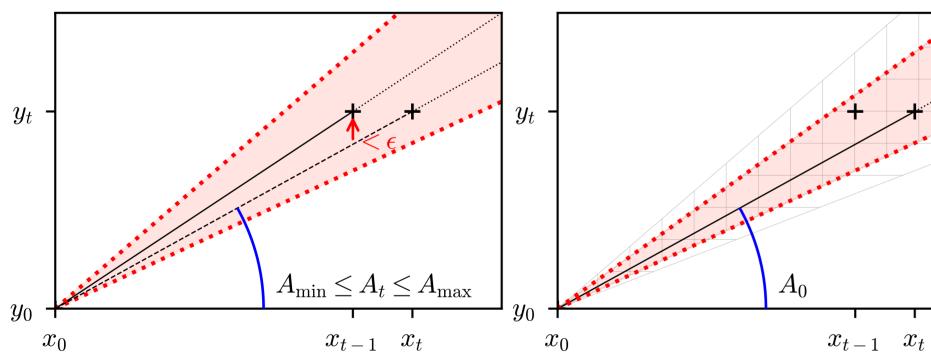
- Geolocation data is sensitive: from those, one can infer points of interest (POIs) such as place of living, work, political or shopping habits;
- Location privacy protection mechanisms (LPPMs) exist to transform traces, so they can still be used by third-party service providers *without* leaking personal data;
- The best possible usage is to gather data needed to run LPPMs directly on the device, to perform the data protection steps in-situ;
- Mobile devices are however very constrained from a resources point of view, having limited CPU, memory, storage etc. capacities.

## **FLAIR**

FLAIR (Fast LineAr InteRpolation) is a new piecewise linear approximation technique used to model and store temporal data streams.









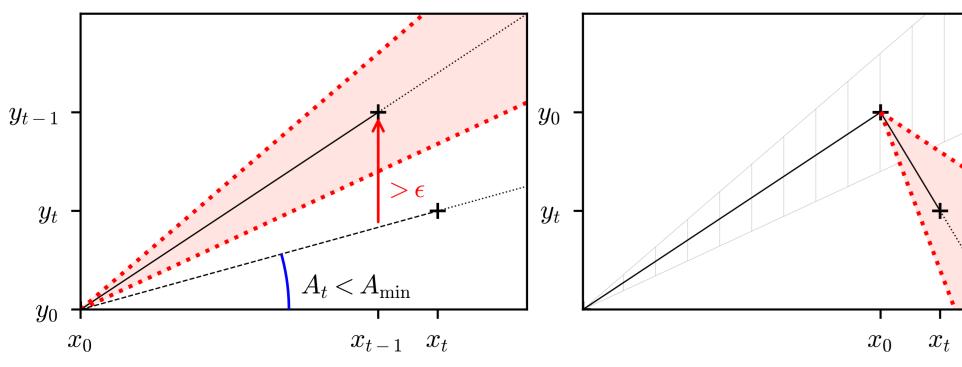


Figure 3. If new point does not fit, current model is saved, and a new one is created.

## FLAIR: Storing unbounded data streams on mobile devices to unlock user privacy at the edge

Olivier Ruas<sup>1</sup>

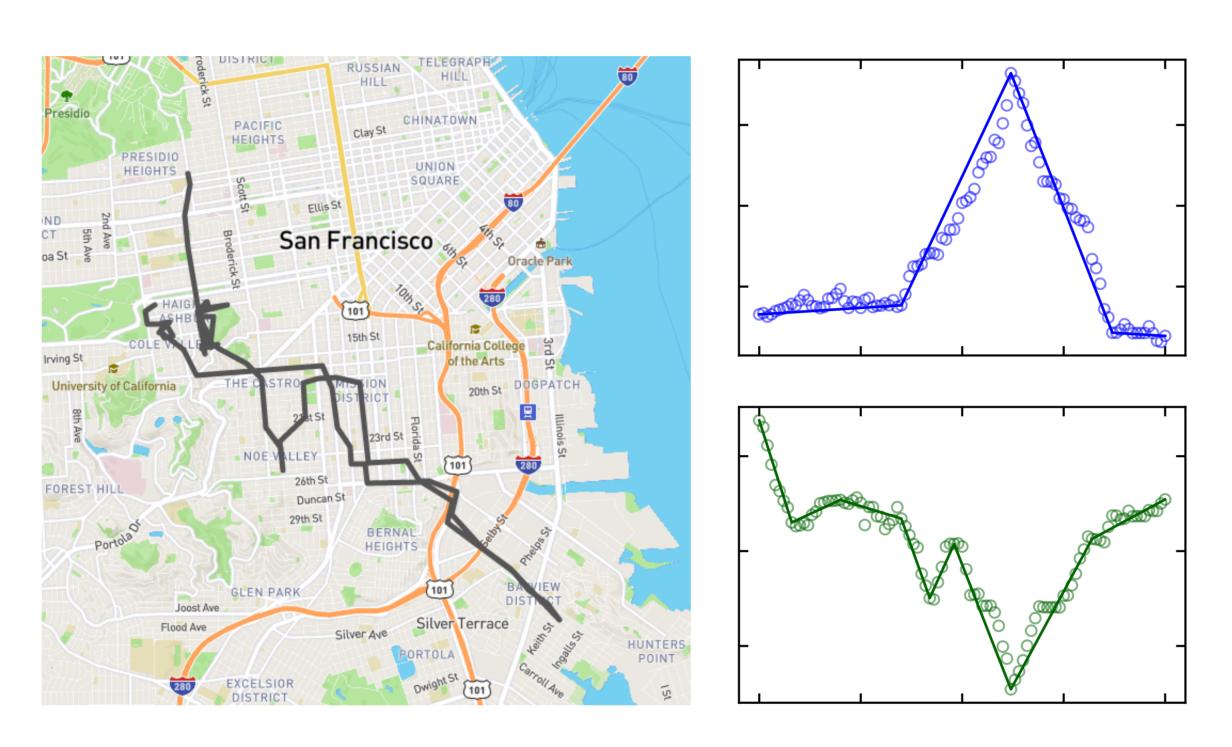
Adrien Luxey<sup>2</sup>

<sup>1</sup>Pathway

<sup>2</sup>Inria Spirals - CRIStAL

To check if a new inserted entry fits the model, FLAIR controls if it is in the cone modeled around latest entry.

- if yes, the model is updated: the in-memory cone becomes the intersection between previous cone and error cone around new entry (see figure 2);
- if no, the model is saved, and a new error cone is devised from latest entry and newly inserted point (see figure 3).





## FLAIR performances

The main objective of FLAIR is to allow the storage of big temporal datasets on reduced memory. We check its storage capabilities by modeling two mobility datasets, PrivaMov [3] and Cabspotting [4]:

- PrivaMov (5GB) is modeled with 25MB (with  $\epsilon$  = 0.001)  $\rightarrow$  99.95% gain
- Cabspotting size gain equals 21.02% (with  $\epsilon$  = 0.001), due to traces lower density.

Moreover, checking the data throughput of FLAIR on random values, it is:

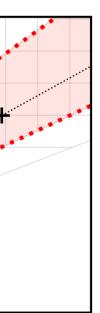
- 3505 times faster on sequential writes
- 2343 times faster on random reads

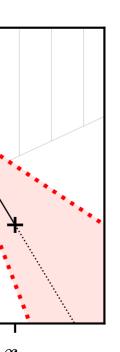
than SWAB[2] and GreyCat [1] competitors.

## **Protecting users' privacy**

## Promesse

Promesse [5] is a location privacy protection mechanism that removes POIs from traces by smoothing user speed along said traces. We implement it on mobile devices to provide protection to users; to assert Promesse's privacy protection, we simulate attacks on users' phones directly.





Rémy Raes<sup>2</sup> Romain Rouvoy<sup>2</sup>

POI-attack is the state-of-the-art algorithm to infer POIs from location data; it is however slow (1h run time on desktop computer), and even worse on mobile devices.

To counter that, we propose a new algorithm, dubbed Divide & Stay (D&S), to compute POIs faster.

| Platform | POI-attack      | D&S  | Speed-up     |
|----------|-----------------|------|--------------|
| Desktop  | 59 min 20 s     | 32 s | ×111         |
| iOS      | 1 h 00 min 01 s | 22 s | $\times 164$ |
| Android  | 1 h 58 min 04 s | 59 s | $\times 120$ |

Table 1. Computation times of raw POIs for PrivaMov's **user** 1 on different platforms. D&S is at least 100 times faster than state-of-the-art approaches.

This shows that *Divide & Stay* enables infering points of interest from geolocation traces directly on mobile phones, which is not possible with the classical POI-attack approach, the latter taking too much time to execute.

D&S allows us to compute POIs fast, but are these as accurate as POI-attack-computed POIs? We compare in the table below the quality of all computed POIs: with/without FLAIR modeling, with/without Promesse protection, and using either POI-attack or D&S.

| without Promesse |          | with Promesse |          |       |  |
|------------------|----------|---------------|----------|-------|--|
| F                | Raw POIs | FLAIR         | Raw POIs | FLAIR |  |
|                  | 30       | 31            | 0        | 0     |  |
|                  | 30       | 30            | 0        | 0     |  |
| 5                | 21       | 20            | _        | _     |  |

|                  | without Promesse |       | with Promesse |       |
|------------------|------------------|-------|---------------|-------|
| Algorithm        | Raw POIs         | FLAIR | Raw POIs      | FLAIR |
| POI-attack       | 30               | 31    | 0             | 0     |
| D&S              | 30               | 30    | 0             | 0     |
| POI-attack ∩ D&S | 21               | 20    | _             | -     |

Table 2. Impact of FLAIR and D&S on the number of inferred POIs from **user** 0's trace in Cabspotting. Thanks to FLAIR and D&S, Promesse succeeds to protect user privacy at the edge.

More than 60% of D&S-computed POIs are the same as POI-attack-computed POIs, and 90% of the POIs are at a distance lower than 22 meters than a "real" one:

Using FLAIR to model data does not alter their utility.

- data with high utility. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 539–546. IEEE, 2015.

# Université de Lille

## Divide & Stay

## References

[1] Thomas Hartmann, François Fouquet, Assaad Moawad, Romain Rouvoy, and Yves Le Traon. Greycat: Efficient what-if analytics for data in

[2] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for segmenting time series. In Proceedings 2001 IEEE

[3] Sonia Ben Mokhtar, Antoine Boutet, Louafi Bouzouina, Patrick Bonnel, Olivier Brette, Lionel Brunie, Mathieu Cunche, Stephane D'Alu, Vincent Primault, Patrice Raveneau, et al. Priva'mov: Analysing human mobility through multi-sensor datasets. In NetMob 2017, 2017. [4] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. Crawdad data set epfl/mobility (v. 2009-02-24), 2009.

[5] Vincent Primault, Sonia Ben Mokhtar, Cédric Lauradoux, and Lionel Brunie. Time distortion anonymization for the publication of mobility

motion at scale. Information Systems, 83:101–117, 2019.

international conference on data mining, pages 289–296. IEEE, 2001.