

Liberté Égalité Fraternité

(Don't you) Forget about me: On the importance of time in data Smart compression is bad

Too much data to handle? Let's see what we can do! Don't overthink it, truly

Rémy Raes

01 Context

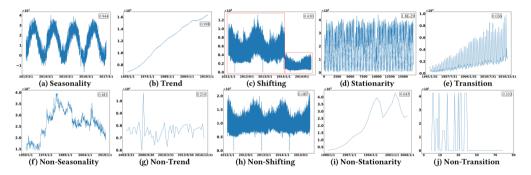
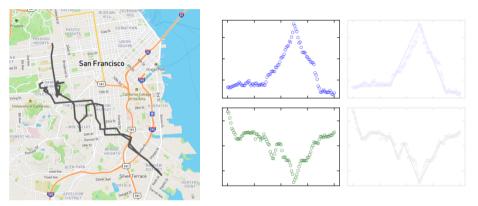
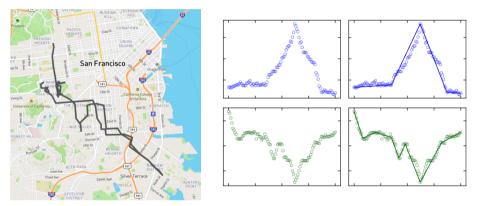



Figure 1: Visualization of data with different characteristics.


Qiu et al. TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods. *Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-809* (10.14778/3665844.3665863)

Fast linear interpolation (FLI)

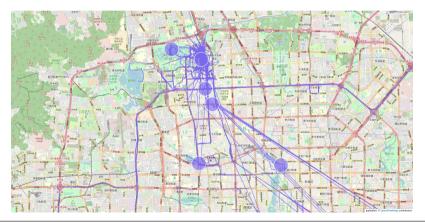
Rémy Raes, Olivier Ruas, Adrien Luxey-Bitri, Romain Rouvoy. Compact Storage of Data Streams in Mobile Devices. *DAIS'24 - 24th International Conference on Distributed Applications and Interoperable Systems, Jun 2024, Groningen, Netherlands.* (hal-04535716v3)

Fast linear interpolation (FLI)

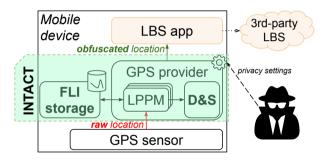
Rémy Raes, Olivier Ruas, Adrien Luxey-Bitri, Romain Rouvoy. Compact Storage of Data Streams in Mobile Devices. DAIS'24 - 24th International Conference on Distributed Applications and Interoperable Systems, Jun 2024, Groningen, Netherlands. (hal-04535716v3)

Location privacy

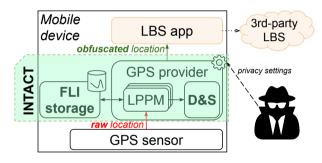
Location data is sensitive


Can be mined to extract Points of Interest (POIs)

(nría 6/19

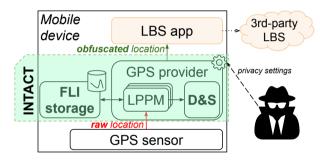

Location privacy

- Location data is sensitive
- ► Can be mined to extract **Points of Interest** (POIs)


6/19 Ínría

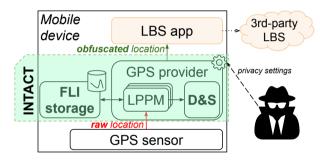
► INTACT: in situ location protection

- Local storage of private data
- Local attack and protection mechanisms
- Locally ensure data is safe before sharing it


► INTACT: in situ location protection

Local storage of private data

- Local attack and protection mechanisms
- Locally ensure data is safe before sharing it


► INTACT: in situ location protection

- Local storage of private data
- Local attack and protection mechanisms

 Locally ensure data is safe before sharing it

► INTACT: in situ location protection

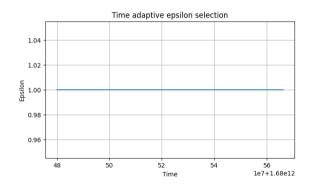
- Local storage of private data
- Local attack and protection mechanisms
- Locally ensure data is safe before sharing it

- Use a function to pick tolerated error
- Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 - Decreasing value:
 - Linea
 - by step
 - with power function

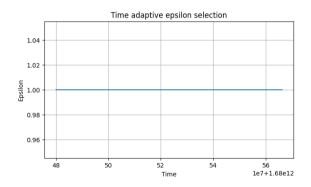
Use a function to pick tolerated error

Use a function to pick tolerated error

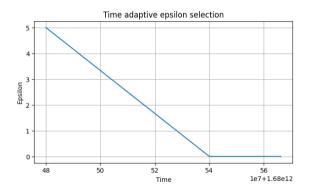
► Function is time-indexed

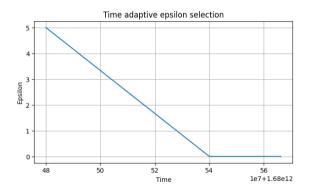

- Different behaviours:
 - Constant value (FLI)
 - Decreasing value:
 - Linea
 - by step
 - with power function

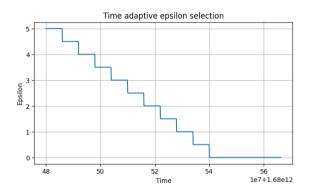
- Use a function to pick tolerated error
- Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 - Decreasing value
 - Linea
 - by step
 - with power function



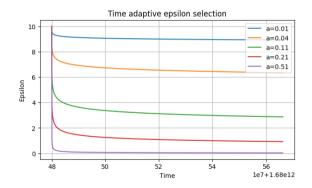
- Use a function to pick tolerated error
- ► Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 - Decreasing value
 - Linea
 - by step
 - with power function


02 Works

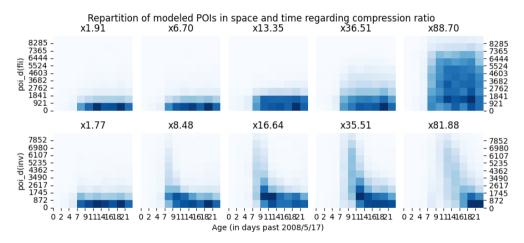

- Use a function to pick tolerated error
- Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 - Decreasing value
 - Linea
 - by step
 - with power function


- ► Use a function to pick tolerated error
- ► Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 - Decreasing value:
 - Linear
 - by step
 - with power function

- ► Use a function to pick tolerated error
- ► Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 - Decreasing value:
 - Linear
 - by step
 - with power function


- ► Use a function to pick tolerated error
- ► Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 - Decreasing value:

by step


with power function

- ► Use a function to pick tolerated error
- Function is time-indexed
- Different behaviours:
 - Constant value (FLI)
 Decreasing value:
 - - Linear
 - by step
 - with power function

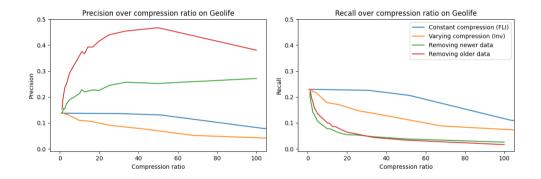
COld data degradation hint

Benchmark

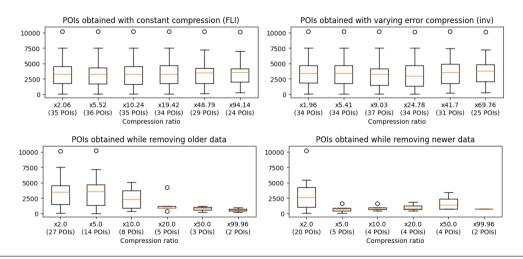
POI prediction

- Split traces in train and test datasets
- Extract POIs from train
- Extract POIs from compressed test
- Compare both POI sets
- Several compression techniques
 - Modelling (with constant and varying error)
 - Removal (of newer or older data)

Benchmark


POI prediction

- Split traces in *train* and *test* datasets
- Extract POIs from train
- Extract POIs from compressed test
- Compare both POI sets
- Several compression techniques
 - Modelling (with constant and varying error)
 - Removal (of newer or older data)



c

Results (2/2): Distance of modeled POIs to closest raw POI

1

03 Future works

► Looks like smart compression is not good

- Is there a use case requiring keeping a highly degraded version of the data rather than its removal?
 - "Right to be forgotten"?

(nría 16/19

- Looks like smart compression is not good
- Is there a use case requiring keeping a highly degraded version of the data rather than its removal?

"Right to be forgotten"?

- Looks like smart compression is not good
- Is there a use case requiring keeping a highly degraded version of the data rather than its removal?
 - "Right to be forgotten"?

(nría 16/19

"Right to be forgotten" hint

Data days old

Data months old

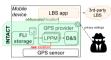
Data years old

"Right to be forgotten" hint

"Right to be forgotten" hint

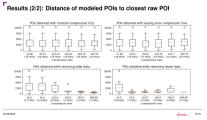
Data days old

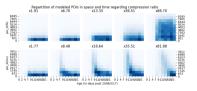
Data months old


Data years old

Take away

Embedded, mobile privacy framework


► INTACT: in situ location protection


- Local storage of private data
 Local attack and protection mechanisms
- Locally ensure data is safe before sharing it

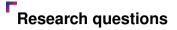
<u>Rémy Raes</u>, Olivier Russ, Advien Luxey-Birri, Romain Rouvey, INTACT: Compact Storage of Data Streams in Mobile Devices to Unlock User Privacy at the Edge. Journal of Internet Services and Applications (to be published soun¹¹⁶)

25/06/2025	las	nía
------------	-----	-----

Cold data degradation hint

25/05/2025

2/13


laria 100

"Right to be forgotten" hint

Merci.

Distributed Machine Learning in Ubiquitous Environments using Location-dependent Models

- ▶ How to store unbounded data streams on constrained mobile devices?
- ► How to exchange relevant model samples among nearby devices?
- ► How to program DML algorithms for the masses?

About the *epsilon* value

- Selecting a good ϵ value requires data domain knowledge
- ▶ Drift between consecutive values (x_1, y_1) and (x_2, y_2) : $|y_2 y_1|/|x_2 x_1|$.

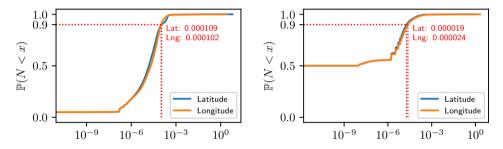


Figure - CDF of latitude and longitude variations of successive locations in CABSPOTTING and PRIVAMOV.

• We used $\epsilon = 10^{-3}$ as a baseline value in the FLI paper

Size results $\epsilon = 10^{-3}$

► From 7.2 GB to 25 MB

Data utility

► Latitude

- Tolerated error: $10^{-3} deg \approx 111 m$
- Median error: 5.33×10^{-5}
- RMSE: 3.72 × 10⁻⁻

► Longitude

- Tolerated error: $10^{-3} deg \approx 88 m$
- Median error: 2.81 × 10⁻⁵
- RMSE: 3.44 × 10⁻¹

Privacy utility

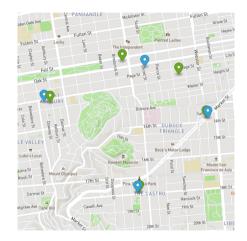


Figure – Points of Interest computed using raw data and FLI-modeled data.

Size results

▶ $\epsilon = 10^{-3}$

► From 7.2 GB to 25 MB

Data utility

► Latitude

- Tolerated error: $10^{-3} deg \approx 111 m$
- Median error: 5.33 × 10⁻⁻
- RMSE: 3.72 × 10⁻⁻

Longitude

- Tolerated error: $10^{-3} deg \approx 88 m$
- Median error: 2.81 × 10⁻⁴
- RMSE: 3.44 × 10⁻

Privacy utility

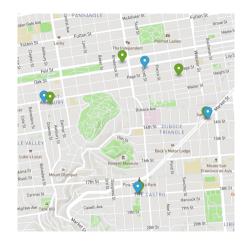
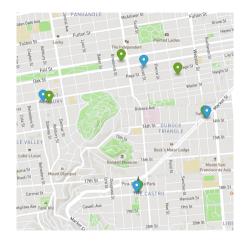


Figure – Points of Interest computed using raw data and FLI-modeled data.

Size results

 $\epsilon = 10^{-3}$


► From 7.2 GB to 25 MB

Data utility

- Latitude
 - Tolerated error: $10^{-3} \deg \approx 111 m$ Median error: 5.33×10^{-5}

 - BMSE: 3.72 × 10⁻⁴
- Longitude
 - Tolerated error: $10^{-3} \deg \approx 88 m$ Median error: 2.81×10^{-5}

 - RMSE: 3.44×10^{-4}

Size results

 $\epsilon = 10^{-3}$

From 7.2 GB to 25 MB

Data utility

- Latitude
 - Tolerated error: $10^{-3} \deg \approx 111 m$ Median error: 5.33×10^{-5}

 - BMSE: 3.72 × 10⁻⁴

Longitude

- Tolerated error: $10^{-3} \deg \approx 88 m$ Median error: 2.81×10^{-5}
- RMSE: 3.44 × 10⁻⁴

Privacy utility

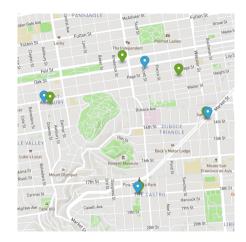


Figure - Points of Interest computed using raw data and FLI-modeled data.

